-  Efficient Pure Exploration for Combinatorial Bandits with Semi-Bandit Feedback.
 Marc Jourdan (ETH Zurich); Mojmir Mutny (ETH Zurich); Johannes Kirschner (ETH Zurich); Andreas Krause (ETH Zürich)
-  Attribute-Efficient Learning of Halfspaces with Malicious Noise: Near-Optimal Label Complexity and Noise Tolerance.
 Jie Shen (Stevens Institute of Technology); Chicheng Zhang (University of Arizona)
-  Precise Minimax Regret for Logistic Regression with Categorical Feature Values.
 Philippe Jacquet (INRIA); Gil I Shamir (Google); Wojciech Szpankowski (Purdue University)
-  Stochastic Combinatorial Bandits with Linear Space and Non-Linear Feedback.
 Mridul Agarwal (Purdue University); Vaneet Aggarwal (Purdue University); Chris Quinn (Iowa State University); Abhishek Kumar Umrawal (Purdue University)
-  Uncertainty quantification using martingales for misspecified Gaussian processes.
 Willie Neiswanger (Stanford University); Aaditya Ramdas (Carnegie Mellon University)
-  Optimal Regret Bounds for Generalized Linear Bandits under Parameter Drift.
 Louis Faury (Criteo AI Lab); Yoan Russac (ENS Paris); Marc Abeille (Criteo AI Lab); Clement Calauzenes (Criteo)
-  Estimating Smooth GLM in Non-interactive Local Differential Privacy Model with Public Unlabeled Data.
 Di Wang (KAUST); Huanyu Zhang (Cornell University); Marco Gaboradi (Boston University); Jinhui Xu (SUNY Buffalo)
-  Statistical guarantees for generative models without domination.
 Nicolas Schreuder (CREST); Arnak Dalalyan (ENSAE Paris – CREST – IP Paris); Victor-Emmanuel Brunel (ENSAE ParisTech)
-  Sequential prediction under log-loss with side information.
 Alankrita Bhatt (UCSD); Young-Han Kim (UCSD)
-  On the Sample Complexity of Privately Learning Unbounded High-Dimensional Gaussians.
 Ishaq Aden-Ali (McMaster University); Hassan Ashtiani (McMaster University); Gautam Kamath (University of Waterloo)
-  Unexpected Effects of Online no-Substitution k-means Clustering.
 Michal Moshkovitz (UC San Diego)
-  Last Round Convergence and No-Dynamic Regret in Asymmetric Repeated Games.
 Le Cong Dinh (University of Southampton); Tri-Dung Nguyen (University of Southampton); Alain Zemkoho (University of Southampton); Long Tran-Thanh (University of Warwick)
-  Asymptotically Optimal Strategies For Combinatorial Semi-Bandits in Polynomial Time.
 Thibaut Cuvelier (CentraleSupelec / Orange Labs); Richard Combes (CentraleSupelec); Eric Gourdin (Orange Labs)
-  Efficient Algorithms for Stochastic Repeated Second-price Auctions.
 Juliette Achddou (ENS Paris); Olivier Cappé (ENS Paris); Aurélien Garivier (ENS Lyon)
-  Contrastive learning, multi-view redundancy, and linear models.
 Christopher Tosh (Columbia University); Akshay Krishnamurthy (Microsoft); Daniel Hsu (Columbia University)
-  Bounding, Concentrating, and Truncating: Unifying Privacy Loss Composition for Data Analytics.
 Mark B Cesar (LinkedIn); Ryan Rogers (LinkedIn)
-  Descent-to-Delete: Gradient-Based Methods for Machine Unlearning.
 Seth Neel (University of Pennsylvania); Aaron Roth (University of Pennsylvania); Saeed Sharifi-Malvajerdi (University of Pennsylvania)
-  Exponential Lower Bounds for Planning in MDPs With Linearly-Realizable Optimal Action-Value Functions.
 Gellert Weisz (DeepMind, UCL); Philip Amortila (); Csaba Szepesvari (DeepMind/University of Alberta)
-  Intervention Efficient Algorithms for Approximate Learning of Causal Graphs.
 Raghavendra Addanki (University of Massachusetts Amherst); Andrew McGregor (University of Massachusetts Amherst); Cameron Musco (University of Massachusetts Amherst)
-  Efficient sampling from the Bingham distribution.
 Rong Ge (Duke University); Holden Lee (Duke); Jianfeng Lu (Duke University); Andrej Risteski (CMU)
-  Adversarial Online Learning with Changing Action Sets: Efficient Algorithms with Approximate Regret Bounds.
 Ehsan Emamjomeh-Zadeh (University of Southern California); Chen-Yu Wei (University of Southern California); Haipeng Luo (USC); David Kempe (USC)
-  Last-Iterate Convergence Rates for Min-Max Optimization: Convergence of Hamiltonian Gradient Descent and Consensus Optimization.
 Jacob D Abernethy (Georgia Institute of Technolog); Kevin A Lai (Georgia Institute of Technology); Andre Wibisono (Georgia Institute of Technology)
-  No-substitution k-means Clustering with Adversarial Order.
 Robi Bhattacharjee (University of California, San Diego); Michal Moshkovitz (UC San Diego)
-  Adaptive Reward-Free Exploration.
 Emilie Kaufmann (CNRS); Pierre Menard (Inria); Omar Darwiche Domingues (Inria); Anders Jonsson (UPF); Edouard Leurent (Inria / Renault); Michal Valko (DeepMind)
-  Stochastic Dueling Bandits with Adversarial Corruption.
 Arpit Agarwal (University of Pennsylvania); Shivani Agarwal (University of Pennsylvania); Prathamesh Patil (University of Pennsylvania)
-  Characterizing the implicit bias via a primal-dual analysis.
 Ziwei Ji (University of Illinois at Urbana-Champaign); Matus Telgarsky (UIUC)
-  A Deep Conditioning Treatment of Neural Networks.
 Naman Agarwal (Google); Pranjal Awasthi (Rutgers University/Google); Satyen Kale (Google)
-  Online Learning of Facility Locations.
 Stephen U Pasteris (University College London); Ting He (Pennsylvania State University); Fabio Vitale (University of Lille); Shiqiang Wang (IBM Research); Mark Herbster (UCL)
-  Non-uniform Consistency of Online Learning with Random Sampling.
 Changlong Wu (University of Hawaii at Manoa); Narayana Santhanam ()
-  Differentially Private Assouad, Fano, and Le Cam.
 Jayadev Acharya (Cornell University); Ziteng Sun (Cornell University); Huanyu Zhang (Cornell University)
-  An Efficient Algorithm for Cooperative Semi-Bandits.
 Riccardo Della Vecchia (Bocconi University); Tommaso R. Cesari  (ANITI / Toulouse School of Economics)
-  Sample Complexity Bounds for Stochastic Shortest Path with a Generative Model.
 Jean Tarbouriech (Facebook AI Research & Inria); Matteo Pirotta (Facebook AI Research); Michal Valko (Inria); Alessandro Lazaric (FAIR)
-  Episodic Reinforcement Learning in Finite MDPs: Minimax Lower Bounds Revisited.
 Omar Darwiche Domingues (Inria); Pierre Menard (Inria); Emilie Kaufmann (CNRS); Michal Valko (DeepMind)
-  Subspace Embeddings Under Nonlinear Transformations.
 Aarshvi Gajjar (University of Massachusetts, Amherst); Cameron Musco (University of Massachusetts Amherst)
-  Submodular Combinatorial Information Measures with Applications in Machine Learning.
 Rishabh Iyer (University of Texas at Dallas); Ninad A Khargonkar (University of Texas at Dallas); Jeffrey  A Bilmes (University of Washington); Himanshu Asnani (TIFR)
-  Learning a mixture of two subspaces over finite fields.
 Aidao Chen (Northwestern University); Anindya De (University of Pennsylvania); Aravindan Vijayaraghavan (Northwestern University)
-  Near-tight closure bounds for the Littlestone and threshold dimensions.
 Badih Ghazi (Google); Noah Golowich (Massachusetts Institute of Technology); Ravi Kumar (Google); Pasin Manurangsi (Google)
-  Learning and Testing Irreducible Markov Chains via the k-Cover Time.
 Siu On Chan (CUHK); Qinghua Ding (Chinese University of Hong Kong); Sing Hei Li (CUHK)
-  Testing Product Distributions: A Closer Look.
 Arnab Bhattacharyya (National University of Singapore); Sutanu Gayen (National University of SIngapore); Saravanan Kandasamy (Cornell University); N. V.  Vinodchandran (University of Nebraska)
-  A case where a spindly two-layer linear network whips any neural network with a fully connected input layer.
 Manfred K. Warmuth (UC Santa Cruz & Google Inc.); Wojciech Kotlowski (Poznan University of Technology); Ehsan Amid (UCSC & Google)
-  Efficient Learning with Arbitrary Covariate Shift.
 Adam Tauman Kalai (Microsoft Research); Varun Kanade (University of Oxford)
-  Online Boosting with Bandit Feedback.
 Nataly Brukhim (Princeton University); Elad Hazan (Princeton University)
-  Self-Tuning Bandits over Unknown Covariate-Shifts.
 Joseph Suk (Columbia University); Samory Kpotufe (Columbia University)
-  Stable Sample Compression Schemes: New Applications and an Optimal SVM Margin Bound.
 Steve Hanneke (Toyota Technological Institute at Chicago); aryeh Kontorovich (Ben-Gurion University)
-  Estimating Sparse Discrete Distributions Under Privacy and Communication Constraints.
 Jayadev Acharya (Cornell University); Peter Kairouz (Google); Yuhan Liu (Cornell); Ziteng Sun (Cornell University)
-  Learning with comparison feedback.
 Michela Meister (Cornell University); Sloan Nietert (Cornell University)